Relationship Between TOMM40 and APOE Genotypes in the Wisconsin Registry for Alzheimer’s Prevention
Mark A. Sager1
Asenath La Rue1
Sterling C. Johnson1
Rebecca Koscik1

Erin McMullen Jonaitis1
Sanjay Asthana1
Robert C. Green2
Bruce P. Hermann1

1UW School of Medicine and Public Health, Madison, WI, USA
2Harvard Medical School, Boston, MA, USA
The TOMM40 gene is a poly thymine (T) repeat located within intron 6 of chromosome 19 and is inherited with APOE. Studies have implicated a role for TOMM40 in Alzheimer’s disease (AD) pathogenesis, but these studies are few in number and have involved small sample sizes. For this reason, little is known about the relationship between TOMM40 poly T length and APOE genotypes. The purpose of this study is to better define this relationship in a large sample enriched with parental history of AD.
METHODS

1,318 asymptomatic middle-aged adults with both TOMM40 and APOE genotyping enrolled in WRAP were eligible for this study. 71% of the study population had a parental history of AD, 70% were female, 94% were non-Hispanic Caucasian and 40% possessed at least one APOE ε4 allele. TOMM40 and APOE genotyping were performed by Polymorphic DNA Technologies, Alameda, CA. Poly T lengths were classified as short (<20), long (20-30) or very long (>30) as in Lutz et al., 2010.
Figure 2. TOMM40 Poly T Lengths for APOE ε4 Carriers

- APOE ε3S
- APOE ε4L
- APOE ε3VL

Allele Frequency

TOMM40 Poly-T Length
APOE and TOMM40 Distributions in Non-Hispanic Caucasians

<table>
<thead>
<tr>
<th>TOMM40</th>
<th>APOE Genotype</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/S</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>S/L</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>S/VL</td>
<td>50%</td>
<td>43%</td>
</tr>
<tr>
<td>L/L</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>L/VL</td>
<td>--</td>
<td>3%</td>
</tr>
<tr>
<td>VL/VL</td>
<td>25%</td>
<td>29%</td>
</tr>
<tr>
<td>Total (%)</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>TOMM40</td>
<td>APOE ε4- N (%)</td>
<td>APOE ε4+ N (%)</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>S/S</td>
<td>183 (24)</td>
<td>4 (2)</td>
</tr>
<tr>
<td>S/L</td>
<td>3 (<1)</td>
<td>229 (47)</td>
</tr>
<tr>
<td>S/VL</td>
<td>379 (50)</td>
<td>15 (3)</td>
</tr>
<tr>
<td>L/L</td>
<td>0 (0)</td>
<td>51 (10)</td>
</tr>
<tr>
<td>L/VL</td>
<td>4 (1)</td>
<td>187 (38)</td>
</tr>
<tr>
<td>VL/VL</td>
<td>191 (25)</td>
<td>3 (1)</td>
</tr>
<tr>
<td>Total N (%)</td>
<td>760 (100)</td>
<td>489 (100)</td>
</tr>
</tbody>
</table>
Figure 1. TOMM40 Poly T Lengths for APOE ε4 Noncarriers

- APOE ε3S
- APOE ε4L
- APOE ε3VL
RESULTS

• Among non-Hispanic Caucasians without an ε4 allele, poly T lengths were bi-modally distributed, either <20 or >30 with few exceptions. See Figure 1.

• For non-Hispanic Caucasians with an ε4 allele, poly T lengths for ε4 alleles were uniformly between 20 and 30 with 8% of poly T lengths between 20 and 22 and 92% between 27 and 30. See Figure 2.
RESULTS

• Poly T lengths associated with APOE genotypes did not vary for persons with and without a parental history of AD.

• Poly T lengths for ε4 alleles in African-Americans were significantly shorter than seen in Caucasians. 43% of ε4 alleles in African-Americans had a poly T length <20 vs. <1% for Caucasians (not shown).
CONCLUSIONS

These findings are consistent with results reported from smaller samples and with few exceptions, indicate a consistent relationship between TOMM40 poly T length and APOE genotype for non-Hispanic Caucasians. The presence of two distinct poly T lengths (20-22 and 27-30) in persons with ε4 alleles has not previously been reported. The biologic significance of TOMM40 poly T length in persons with different APOE genotypes remains to be determined.
This research was supported by:

- NIA grant R01AG27161 (Wisconsin Registry for Alzheimer Prevention: Biomarkers of Preclinical AD)
- Helen Bader Foundation
- Northwestern Mutual Foundation
- Extendicare Foundation
- State of Wisconsin
CONTACT INFO

Mark A. Sager, MD, Director
Wisconsin Alzheimer’s Institute
University of Wisconsin School of Medicine and Public Health
608-829-3300
masager@wisc.edu

www.wai.wisc.edu